Show that for $0 < x < \frac{\pi}{2}$, $\tan x > 0$.

$$f(x) = \tan x$$

$$f(x) = sec^2x$$

min
$$\sec^2 \chi \leq \frac{f(b) - f(a)}{b - a} = f'(c) \leq \max_{0 \leq \chi \leq \frac{\chi}{2}} \sec^2 \chi$$

$$\Rightarrow$$
 1 $\leq \frac{\tan(b)-\tan(a)}{b-a} \leq \infty$

$$=$$
 \rightarrow $+an(b)-+an(a) > b-a$

Let
$$b \neq a$$
 and $a = 0$.

Since
$$b \in (0, \frac{\pi}{2})$$
 and $b>0$,

:
$$tan \chi > 0$$
 for $0 < \chi < \frac{\pi}{2}$.